

1 Trade-offs between water loss and carbon gain in a subtropical 2 primary forest on Karst soils in China

5 Jing Wang^{1,2,3}; Xuefa Wen^{1,2*}, Xinyu Zhang^{1,2*}, Shenggong Li^{1,2}

7 1 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic
8 Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
9 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing
10 100190, China

11 3 School of Life Sciences, Beijing Normal University, Beijing 100875, China

12
13
14
15 *Correspondence: Xuefa Wen (Email: wenxf@igsnrr.ac.cn. Phone +86-010-64889272)
16 and Xinyu Zhang (zhangxy@igsnrr.ac.cn. Phone +86-10-64889679)

30 **Abstract:**

31 Little attention has been given to plants's trade-off between carbon gain and water
32 loss in Karst Critical Zone in southwestern China with low soil nutrient and water
33 availability. An advanced understanding of the impact of CO₂ diffusion and maximum
34 carboxylase activity of Rubisco (V_{cmax}) on the light-saturated net photosynthesis (A)
35 and intrinsic water use efficiency (iWUE) in Karst plants can provide insight into
36 physiological strategies used in adaptation to harsh environments. We selected six
37 plant life forms (63 species) in a subtropical Karst primary forest in southwestern
38 China, and measured CO₂ response curves, and calculated corresponding stomatal
39 conductance to CO₂ (g_s), mesophyll conductance to CO₂ (g_m), and V_{cmax} . The results
40 showed that g_s varied from 0.05 to 0.38 mol CO₂ m⁻² s⁻¹, g_m varied from 0.02 to 0.69
41 mol CO₂ m⁻² s⁻¹, and g_m was positively related to g_s ; foliar A was co-limited by g_s , g_m ,
42 and V_{cmax} in trees, tree/shrubs, and shrubs with relatively high leaf mass per area
43 (LMA), and mainly constrained by g_m in grasses, vines, and ferns with relatively low
44 LMA; and iWUE varied from 29.52 to 88.92 $\mu\text{mol CO}_2 \text{ mol}^{-1} \text{ H}_2\text{O}$ across all species,
45 and was significantly correlated with g_s , g_m/g_s , and V_{cmax}/g_s . These results indicated
46 that Karst plants maintained relatively high A and low iWUE through the co-variation
47 of g_s , g_m , and V_{cmax} as adaptation to Karst environment.

48

49 **Key words:** iWUE; mesophyll conductance; stomatal conductance; Karst critical
50 zone; V_{cmax}

51 1 Introduction

52 The Karst Critical Zone (Karst CZ) in southwestern China accounts for over 12% of
53 the total global land area (more than 54×10^4 km²) (Zhang et al., 2011). Compared
54 with other CZs developed on other lithologies, Karst CZ was developed on limestone
55 bedrock, and characterized by inhomogeneous and shallow soil due to the greater
56 hydraulic erosion and complex underground drainage network (Nie et al., 2014; Chen
57 et al., 2015). In such conditions, the soil cannot retain enough nutrients and water for
58 plant growth even though precipitation is high (1000-2000 mm) (Liu et al., 2011; Fu
59 et al., 2012; Chen et al., 2015). To adapt to the harsh environment, Karst plants
60 develop distinct patterns of light-saturated net photosynthesis (A) and trade-off
61 between carbon gain and water loss to adapt to the harsh environment (Sullivan et al.,
62 2017). The intrinsic water use efficiency ($iWUE = A/g_{sw}$, the ratio of A to stomatal
63 conductance to H₂O (g_{sw})), is an effective indicator of the trade-off between carbon
64 gain and water loss (Moreno-Gutierrez et al., 2012). Until now, variability in A and
65 $iWUE$ has been reported only in 13 co-occurring trees and 12 vines (Chen et al.,
66 2015), and 12 co-occurring tree species (Fu et al., 2012) in two tropical Karst forests
67 in southwestern China.

68

69 Based on Fick's first law, A has been shown to be limited only by leaf stomatal
70 conductance to CO₂ ($g_s = g_{sw}/1.6$) and V_{cmax} (Flexas et al., 2012; Buckley and Warren,
71 2014); originally, mesophyll conductance to CO₂ (g_m) was proposed to be infinite, i.e.
72 CO₂ concentration in chloroplast (C_c) was equal to the CO₂ concentration in
73 intercellular air space (C_i). Indeed, g_m varies greatly among species (Warren and
74 Adams, 2006; Flexas et al., 2013). Recent studies have confirmed that A was
75 constrained jointly by g_s , g_m , and V_{cmax} , and their relative contribution to A was
76 species-dependent and site-specific (Carriqui et al., 2015; Tosens et al., 2016; Galmes
77 et al., 2017; Peguero-Pina et al., 2017a; Peguero-Pina et al., 2017b;
78 Veromann-Jurgenson et al., 2017).

79

80 Variation in iWUE ($=A/g_{sw}$) depends on the relative changes in A (g_s , g_m , V_{cmax}) and
81 g_{sw} ($g_{sw}=1.6g_s$) (Flexas et al., 2013; Gago et al., 2014). Theoretical relationships
82 between iWUE and g_s , g_m , and V_{cmax} have been deduced using two approaches. Based
83 on Fick's first law of CO_2 diffusion, Flexas et al. (2013) deduced that iWUE was a
84 function of g_m/g_s and CO_2 gradients (C_a-C_c) within leaf. On the other hand, combining
85 Fick's first law of CO_2 diffusion and Farquhar biochemical model (Farquhar and
86 Sharkey, 1982), Flexas et al. (2016) deduced that iWUE was a function of V_{cmax}/g_s , C_c ,
87 CO_2 compensation point of photosynthesis (I^*), and the effective Michaelis–Menten
88 constant of Rubisco for CO_2 (K_m). Until now, most previous studies focused on the
89 role of CO_2 diffusion in limiting iWUE, and suggested that iWUE was negatively
90 related to g_s , and positively related to g_m/g_s (Flexas et al., 2013). Gago et al. (2014)
91 used a meta-analysis with 239 species, and were the first to confirm that iWUE was
92 positively related to V_{cmax}/g_s . Although both g_m/g_s and V_{cmax}/g_s were positively
93 correlated with iWUE, there was only a weak correlation between g_m/g_s and V_{cmax}/g_s ,
94 which indicates that iWUE can be improved by increasing V_{cmax} or g_m (proportionally
95 higher than g_s), not both (Gago et al., 2014).

96

97 It is noteworthy that Flexas et al. (2016) and Gago et al. (2014) found that most of the
98 previous work on constraints of g_s , g_m , and V_{cmax} on A were conducted in crops or
99 saplings, and only a few studies were in natural ecosystems. For example, g_m was the
100 main factor limiting A in two Antarctic vascular grasses (Saez et al., 2017), and in 35
101 Australian sclerophylls (Niinemets et al., 2009b) in different habitats. The A of two
102 closely-related Mediterranean *Abies* species growing in two different habitats was
103 mainly constrained by g_m in one, and by g_s in the other habitat (Peguero-Pina et al.,
104 2012). Beyond that, it still remains unknown how g_s , g_m , and V_{cmax} regulate A and
105 iWUE across species in natural ecosystems.

106

107 In this study, we selected 63 dominant plant species, including six life forms (29 trees,
108 11 trees/shrubs, 11 shrubs, 4 grasses, 5 vines, and 3 ferns), from a subtropical primary
109 forest in the Karst CZ of southwestern China, and measured their A and CO_2 response

110 curves. The g_m was calculated using the curve-fitting method (Ethier and Livingston,
111 2004). The obtained g_m was used to transform the $A-C_i$ into $A-C_c$ response curves, and
112 then to calculate the A and V_{cmax} . Our objective was to determine and distinguish the
113 limitations of CO_2 diffusion (g_s and g_m) and V_{cmax} on A and iWUE in different life
114 forms in this Karst primary forest.

115

116 **2 Materials and Methods**

117 **2.1 Site information**

118 This study was conducted in a subtropical primary forest ($26^{\circ}14'48''\text{N}$, $105^{\circ}45'51''\text{E}$;
119 elevation, 1460 m), located in the Karst CZ of southwestern China. This region has a
120 typical subtropical monsoon climate, with a mean annual precipitation of 1255 mm,
121 and mean annual air temperature of 15.1°C (Zeng et al., 2016). The soils are
122 characterized by a high ratio of exposed rock, shallow and nonhomogeneous soil
123 cover, and complex underground drainage networks, e.g. grooves, channels and
124 depressions (Chen et al., 2010; Zhang et al., 2011; Wen et al., 2016). Soils and soil
125 water are easily leached into underground drainage networks. Soil texture was
126 silt-clay loam, and soil PH was 6.80 ± 0.16 (Chang et al., 2018). The total nitrogen
127 and phosphorus content in soil was 7.30 ± 0.66 and $1.18 \pm 0.35 \text{ g Kg}^{-1}$, respectively,
128 which was similar with that of non-Karst CZs (Wang et al., in review). However, the
129 soil quantities ($16.04\text{--}61.89 \text{ Kg m}^{-2}$) and nitrogen and phosphorus storage (12.04 and
130 1.68 t hm^{-2}) was much lower than that of non-Karst CZs, due to the thin and
131 heterogeneous soil layer (He et al., 2008; Jobbagy et al., 2000; Lu et al., 2010; Li et
132 al., 2008). The typical vegetation type is mixed evergreen and broadleaf deciduous
133 primary forest, dominated by *Itea yunnanensis* Franch, *Carpinus pubescens* Burk.,
134 and *Lithocarpus confinis* Huang, etc. (Wang et al., in review).

135

136 **2.2 Leaf gas-exchange measurements**

137 In July and August 2016, 63 dominant species of six life forms (Table S1), including
138 29 trees, 11 trees/shrubs, 4 shrubs, 4 grasses, 5 vines, and 3 ferns, were selected for

139 measurements of the A and CO_2 response curves. Details of leaf sampling and
140 measurements of CO_2 response-curves were described in Wang et al. (in review).
141 Briefly, a total of 189 fully sun-exposed, mature leaves were collected from adult
142 individuals of 63 species to measure CO_2 response curves following procedural
143 guidelines (Long and Bernacchi, 2003) using a portable photosynthesis system
144 (Li-6400, Li-Cor, USA).

145

146 A and the corresponding g_{sw} ($g_s=g_{\text{sw}}/1.6$), C_a , and C_i were extracted from the CO_2
147 response curve under saturating light ($1500 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$) conditions, with CO_2
148 concentration inside the cuvette set to $400 \text{ } \mu\text{mol mol}^{-1}$ (Domingues et al., 2010;
149 Domingues et al., 2010). V_{cmax} was estimated by fitting $A-C_c$ curves (Ethier and
150 Livingston, 2004). The obtained values of g_m were used to transform the $A-C_i$ into
151 $A-C_c$ response curves as $C_c=C_i-A/g_m$.

152

153 The g_m was calculated using a curve-fitting method (Ethier and Livingston, 2004). In
154 this study, calculated C_c and the initial slope of $A-C_c$ curves were above zero,
155 indicating that g_m estimated by the curve fitting method was valid (Warren and
156 Adams, 2006). Further details on the method to calculate g_m are given in Section 4.1.

157

158 **2.3 Theory of trade-off between carbon and water at leaf scale**

159 The exchange of H_2O and CO_2 between the leaf and the atmosphere is regulated by
160 stomata (Gago et al., 2014). According to Fick's first law of diffusion, A and stomatal
161 conductance to CO_2 (g_s) are related as:

$$162 A = g_s(C_a - C_i) \quad (1)$$

163 where A is the photosynthetic rate ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$); C_a is the ambient CO_2
164 concentration ($\mu\text{mol mol}^{-1}$); C_i is the intercellular CO_2 concentration ($\mu\text{mol mol}^{-1}$).

165

166 Besides stomata, mesophyll is another barrier for CO_2 inside the leaf. A and
167 mesophyll conductance to CO_2 (g_m) are related as:

168 $A = g_m(C_i - C_c)$ (2)

169 where C_c is the CO_2 concentration at the sites of carboxylation ($\mu\text{mol mol}^{-1}$). C_c not
170 only depends on CO_2 supply by g_m , but also on CO_2 demand (the maximum
171 carboxylase activity of Rubisco, V_{cmax}).

172

173 **(1) The relationship between iWUE and g_m/g_s**

174 iWUE is a function of CO_2 diffusion conductances (e.g. g_s and g_m) and leaf CO_2
175 concentration gradients. We can express A as the product of the total CO_2 diffusion
176 conductance (g_t) from ambient air to chloroplasts, and the corresponding CO_2
177 concentration gradients by combining Eq. (1) and (2) (Flexas et al., 2013):

178 $A = g_t [(C_a - C_i) + (C_i - C_c)]$ (3)

179 where $g_t = 1/(1/g_s + 1/g_m)$. This equation demonstrates that CO_2 concentration gradients
180 in leaves are constrained by stomatal and mesophyll resistance to CO_2 . Therefore,
181 iWUE can be expressed as:

182
$$\frac{A}{g_{\text{sw}}} = \frac{1}{1.6} \left(\frac{g_m/g_s}{1+g_m/g_s} \right) [(C_a - C_i) + (C_i - C_c)]$$
 (4)

184 Eq. (4) means that iWUE is positively related to g_m/g_s , but not to g_m itself (Warren
185 and Adams, 2006; Flexas et al., 2013; Buckley and Warren, 2014; Cano et al., 2014).

186

187 **(2) The relationship between iWUE and V_{cmax}/g_s**

188 When Fick's first law and the Farquhar biochemical model (Farquhar and Sharkey,
189 1982) are combined, iWUE is also a function of V_{cmax} . Based on the Farquhar
190 biochemical model (Farquhar and Sharkey, 1982), when A is limited by Rubisco, it
191 can be expressed by the following equation (Sharkey et al., 2007):

192
$$A = \frac{V_{\text{cmax}}(C_c - \Gamma^*)}{(C_c + K_m)} \cdot R_d$$
 (5)

193

194 where Γ^* is the CO_2 compensation point of photosynthesis in the absence of
195 non-photorespiratory respiration in light (R_d), and K_m is the effective
196 Michaelis–Menten constant of Rubisco for CO_2 . Combining Eq. (1) and (5) (Flexas et
197 al., 2016), we obtain:

198
$$\frac{V_{\text{cmax}}}{g_s} = \frac{(C_c + K_m)(C_a - C_i)(A + R_d)}{(C_c - \Gamma^*)A} \quad (6)$$

200 Because R_d is much smaller than A in actively photosynthesizing leaves, V_{cmax}/g_s can
201 be approximated as:

202
$$\frac{V_{\text{cmax}}}{g_s} \approx \frac{(C_c + K_m)(C_a - C_i)}{(C_c - \Gamma^*)} = \frac{(C_c + K_m)}{(C_c - \Gamma^*)} \frac{A}{g_s} \quad (7)$$

204 Consequently, iWUE can be expressed as:

205
$$\frac{A}{g_{\text{sw}}} = \frac{1}{1.6} \frac{V_{\text{cmax}}}{g_s} \frac{(C_c - \Gamma^*)}{(C_c + K_m)} \quad (8)$$

207

208 2.4 Quantitative analysis of limitations on A

209 The relative contribution of g_s (l_s), g_m (l_m) and V_{cmax} (l_b) to A can be separated by a
210 quantitative limitation model introduced by Jones (Jones, 1985) and further developed
211 by Grassi & Magnani (2005). The sum of l_s , l_m , and l_b is 1. l_s , l_m and l_b can be
212 calculated as:

213

214
$$l_s = \frac{g_t/g_s \cdot \partial A / \partial C_c}{g_t + \partial A / \partial C_c} \quad (12)$$

215

216
$$l_m = \frac{g_t/g_m \cdot \partial A / \partial C_c}{g_t + \partial A / \partial C_c} \quad (13)$$

217

218
$$l_b = \frac{g_t}{g_t + \partial A / \partial C_c} \quad (14)$$

219

220 where $\partial A / \partial C_c$ was calculated as the slope of A - C_c response curves over a C_c range of
221 50–100 $\mu\text{mol mol}^{-1}$. l_s , l_m and l_b have no units. A is co-limited by the three factors
222 when $l_s \approx 0.3$, $l_m \approx 0.3$ and $l_b \approx 0.4$ (Galme, J. et al., 2017).

223

224 2.5 Statistical analysis

225 The correlation analysis was performed using the least square method, and all of the
226 data were \log_e -transformed. The probability of significance was defined at $p < 0.05$.

227

228 **3 Results**

229 **3.1 Interrelation among g_s , g_m , g_t , and V_{cmax}**

230 CO₂ concentration gradients in leaf were controlled by CO₂ diffusion conductance
231 and V_{cmax} . Fig. 1 shows the relationship between CO₂ gradients (C_a-C_i , C_i-C_c and
232 C_a-C_c) in leaf and the corresponding CO₂ diffusion conductance (g_s , g_m and g_t) (Fig.
233 1a-c), and between C_a-C_c and V_{cmax} (Fig. 1d). CO₂ concentration gradients (C_a-C_i ,
234 C_i-C_c and C_a-C_c) were significantly negatively associated with the corresponding CO₂
235 diffusion conductance (g_s , g_m and g_t) ($P<0.001$). V_{cmax} was positively associated with
236 C_a-C_c ($P<0.001$).

237

238 The g_s , g_m , and g_t were significantly positively related to each other ($P<0.001$) (Fig.
239 S1). The contribution of g_m to leaf CO₂ gradient was similar to that of g_s (Fig. S3).
240 The contribution of g_s (57.51–155.13 $\mu\text{mol mol}^{-1}$) to C_a-C_c (98.50–282.94 $\mu\text{mol mol}^{-1}$)
241 varied from 28% to 86%, and the contribution of g_m (18.15–179.36 $\mu\text{mol mol}^{-1}$) to
242 C_a-C_c varied from 14% to 72%. But the variation range of g_m (0.02–0.69 mol CO₂ m⁻²
243 s⁻¹) was 4.5 times that of g_s (0.05–0.38 mol CO₂ m⁻² s⁻¹).

244

245 No relationship was found between the CO₂ diffusion conductance (g_s , g_m , and g_t) and
246 V_{cmax} (Fig. S2). However, after normalization of g_s , g_m , g_t , and V_{cmax} for A (normalized
247 parameters are hereafter called $G_s=g_s/A$, $G_m=g_m/A$, $G_t=g_t/A$, and $V=V_{cmax}/A$), V was
248 significantly positively correlated with G_m and G_t ($P<0.001$) (Fig. 2b and c), and was
249 slightly positively correlated with G_s ($P<0.05$) (Fig. 2a), which represented the
250 trade-off between CO₂ supply and demand.

251

252 **3.2 Contribution of g_s , g_m and V_{cmax} to A**

253 The variation in A was attributed to variation in both of g_s , g_m , g_t , and V_{cmax} . A was
254 positively correlated with g_s (Fig. 3a), g_m (Fig. 3b), and V_{cmax} (Fig. 3c). We used the

255 quantitative limitation model (Eqs. (13), (14) and (15)) to separate contributions by g_s
256 (l_s), g_m (l_m), and V_{cmax} (l_b) to limiting A . The l_s , l_m , and l_b were negatively associated
257 with, respectively, g_s , g_m , and V_{cmax} (Fig. 4). The contributions by g_s , g_m , and V_{cmax} to
258 limiting A were different for each species (Fig. S3). l_s varied from 0.17 to 0.45
259 (2.6-fold), l_m varied from 0.05 to 0.55 (10.5-fold), and l_b varied from 0.11 to 0.68
260 (6.2-fold) across species. Overall, g_m contribution to limiting A was the largest
261 ($l_m=0.38\pm0.12$), followed by V_{cmax} ($l_b=0.34\pm0.11$), and g_s ($l_s=0.28\pm0.07$).

262

263 To further understand how A was limited by g_s , g_m , and V_{cmax} , we grouped the 63
264 species into 6 life forms: tree, tree/shrub, shrub, grass, vine, and fern. The averaged
265 leaf mass per area (LMA) of the 6 life forms above were as follows: 69.41 ± 29.31 ,
266 93.94 ± 27.89 , 72.35 ± 42.37 , 47.08 ± 16.39 , 40.86 ± 13.22 and 44.21 ± 12.35 g m⁻².
267 The results showed that tree, tree/shrub, and shrub with relatively high LMA were
268 co-limited by g_s , g_m , and V_{cmax} , while g_m was the main constrain factor for the other
269 three life forms with relatively low LMA (Fig. 5). The l_s showed a decreasing trend
270 from tree to fern. The largest average value of l_s was observed for tree and tree/shrub,
271 followed by shrub, grass, and vine and fern. The l_m first declined, and then increased.
272 Grass had the largest averaged value of l_m . In contrast, l_b first increased and then
273 decreased. Grass had the smallest averaged value of l_b .

274 |

275 **3.3 Effect of g_s , g_m and V_{cmax} on iWUE**

276 The iWUE varied from 29.52 to 88.92 $\mu\text{mol CO}_2 \text{ mol}^{-1} \text{ H}_2\text{O}$. In theory, iWUE is
277 regulated by g_s ($g_{sw}=1.6g_s$), g_m , and V_{cmax} . However, a simple correlation analysis
278 showed that iWUE was negatively related to g_s (Fig. 6b), and not related to A (Fig.
279 6a), g_m (Fig. 6c), and V_{cmax} (Fig. 6d).

280 |

281 A correlation analysis was used to test how g_m/g_s and V_{cmax}/g_s affected iWUE. The
282 results showed that iWUE was positively correlated with g_m/g_s (Fig. 7a) and V_{cmax}/g_s
283 (Fig. 7b). However, there was no significant relationship between g_m/g_s and V_{cmax}/g_s .

284 The iWUE was regulated by co-variation between g_s , g_m and V_{cmax} .

285

286 **4 Discussion**

287 **4.1 The role of g_m in CO₂ diffusion and V_{cmax}**

288 Three methods are most commonly used for g_m estimation. Those methods have been
289 reviewed by Warren (2006) and Pons et al. (2009). Briefly, g_m can be calculated by
290 the stable isotope method (Evans, 1983; Sharkey et al., 1991; Loreto et al., 1992), J
291 method (Bongi and Loreto, 1989; Dimarco et al., 1990; Harley et al., 1992; Epron et
292 al., 1995; Laisk et al., 2005), and ‘curve-fitting’ method (Ethier and Livingston, 2004;
293 Sharkey et al., 2007). All of these methods are based on gas exchange measurements
294 (Pons et al., 2009), and some common assumptions (Warren, 2006). Thus, the
295 accuracy of each method is largely unknown (Warren, 2006).

296

297 The g_m was estimated by the ‘curve-fitting’ method in this study. Although the
298 ‘curve-fitting’ method is less precise than the stable isotope method, the
299 ‘curve-fitting’ method is much more readily available and has been used for several
300 decades (Warren, 2006; Sharkey, 2012). Accurate measurements of A and C_i is a
301 prerequisite for estimating g_m using the ‘curve-fitting’ method (Pons et al., 2009).
302 Warren (2006) pointed out that highly-accurate measurements need small leaf area
303 and low flow rates. We confirmed that the calculated C_c and the initial slope of $A-C_c$
304 curves were positive, suggesting that the measured g_m was reliable (Warren, 2006).

305

306 Large variability in g_m has been shown both between and within species with different
307 leaf forms and habits (Gago et al., 2014; Flexas et al., 2016). Variability in g_m in this
308 study is similar to that in global datasets (Gago et al., 2014; Flexas et al., 2016). The
309 order of averaged g_m from different life forms was as follows: tree > tree/shrub >
310 grass > shrub > vine > fern. Previous studies have confirmed that the liquid phase of
311 mesophyll (Veromann-Jurgenson et al., 2017), cell wall thickness of mesophyll
312 (Terashima et al., 2011) or chloroplast (Tosens et al., 2016), and surface area of

313 mesophyll and chloroplast exposed to intercellular space (Veromann-Jurgenson et al.,
314 2017) were the main limitations for g_m . The LMA varied from 22.98 g m⁻² to 154.61 g
315 m⁻², the averaged value was 69.32±32.70 g m⁻² (Wang et al., in review). Hence, the
316 wide variability of g_m between different species and life forms in the same ecosystem
317 seems to be related to the diversity in leaf anatomical traits.

318

319 Large uncertainties can be introduced by ignoring g_m . On one hand, g_m plays a similar
320 or somewhat lesser role than g_s in CO₂ diffusion in leaf (Warren, 2006). In the present
321 study, g_m was positively related to g_s (Fig. S1), variability range of g_m was larger than
322 that of g_s , and the contribution of g_m to C_a-C_c was similar to that of g_s . Hence,
323 ignoring g_m would overestimate the carbon isotope discrimination in photosynthesis
324 ($\Delta^{13}\text{C}$) (von-Caemmerer, 1996; Warren, 2006). Consistent with previous studies
325 (von-Caemmerer, 1996; Warren, 2006), there was a significantly positive relationship
326 between $\Delta^{13}\text{C}_{g_m}$ and $\Delta^{13}\text{C}_{g_s}$ ($\Delta^{13}\text{C}_{g_m}=2.38*\Delta^{13}\text{C}_{g_s}-35.54$, $R^2=0.22$, $P<0.001$).
327 $\Delta^{13}\text{C}_{g_m}$ represented the carbon isotope discrimination when g_m was finite, and
328 $\Delta^{13}\text{C}_{g_s}$ represented the carbon isotope discrimination when g_m was infinite.

329

330 On the other hand, ignoring g_m would underestimate V_{cmax} up to 75% (Sun et al.,
331 2014). In this study, the relationship between $V_{\text{cmax}_C_i}$ and $V_{\text{cmax}_C_c}$ can be expressed as:
332 $V_{\text{cmax}_C_c}=2.6*V_{\text{cmax}_C_i}-22.12$ ($R^2=0.25$, $P<0.001$). $V_{\text{cmax}_C_i}$ represented V_{cmax} calculated
333 based on the $A-C_i$ curve, and $V_{\text{cmax}_C_c}$ represented V_{cmax} calculated based on the $A-C_c$
334 curve. Furthermore, the leaf barrier to CO₂ caused by g_m has not been represented in
335 the global carbon cycles, leading to an overestimation of CO₂ supply for carboxylation
336 and an underestimation of the response of photosynthesis to atmospheric CO₂ (Sun et
337 al., 2014).

338

339 **4.2 Co-variation in g_s , g_m and V_{cmax} in regulating A**

340 The A was constrained by g_s , g_m , and V_{cmax} acting together, however, variability in the
341 relative contribution of these three factors depended on species and habitats (Tosens
342 et al., 2016; Galmes et al., 2017; Peguero-Pina et al., 2017a; Veromann-Jurgenson et

343 al., 2017). Compared with the global dataset, the A in the study site was high at a
344 given leaf phosphorus (P) level (Wang et al., in review). Under well-watered
345 conditions, A was co-limited by the three factors in angiosperm species (Galmes et al.,
346 2017), and mainly limited by g_m in ferns (Carriqui et al., 2015). Similarly in the
347 present study, A of tree, tree/shrub, and shrub was co-limited by g_s , g_m , and V_{cmax} , and
348 A of fern was mainly limited by g_m . However, A of both grass and vine was mainly
349 limited by g_m (average $l_m > 0.4$, with the largest value of 0.55 and 0.54 for grass and
350 fern, respectively). In addition, 20 of the 63 species were mainly limited by V_{cmax}
351 ($l_b > 0.4$, with the largest value of 0.68).

352

353 The importance of g_s and g_m in constraining A was variable, and depended on leaf and
354 mesophyll structural traits, i.e. LMA (Tomas et al., 2013), and thickness of leaf, cell
355 wall (Peguero-Pina et al., 2017b), and mesophyll itself (Giuliani et al., 2013). The
356 negative correlation of g_m with LMA has been reported in previous studies (Niinemets
357 et al., 2009a; Tomas et al., 2013). The lack of correlation between g_m and LMA, and a
358 positive relationship between g_m /LMA and LMA in this study were similar to those
359 shown for gymnosperms (Veromann-Jurgenson et al., 2017). The reason for the
360 similarities may be a strong investment in supportive structures (Veromann-Jurgenson
361 et al., 2017).

362

363 A of species with low LMA was co-limited by g_s , g_m , and V_{cmax} , while A of species
364 with high LMA was mainly limited by CO_2 diffusion (Tomas et al., 2013). In this
365 study, trees, tree/shrub, and shrubs with relatively high LMA were co-limited by g_s ,
366 g_m , and V_{cmax} , and life forms with low LMA were mainly limited by g_m . Furthermore,
367 we found that g_m was positively related to A ($R^2=0.54$, $P<0.001$, Fig. 3b), however,
368 there was no close relationship between g_m and LMA. The reason for this may be that
369 species with high LMA may have thin cell walls in mesophyll (Terashima et al.,
370 2011), and chloroplast (Tosens et al., 2016), or large surface areas of mesophyll and
371 chloroplast exposed to intercellular space (Veromann-Jurgenson et al., 2017);
372 conversely, species with low LMA may have thin cell walls in mesophyll (Terashima

373 et al., 2011), and chloroplast (Tosens et al., 2016), or small surface areas of mesophyll
374 and chloroplast exposed to intercellular space (Veromann-Jurgenson et al., 2017).

375

376 Furthermore, the co-variation of g_s and g_m can also regulate A . Both g_s and g_m are
377 important physical determinants of CO_2 supply from the atmosphere to the
378 chloroplasts (Giuliani et al., 2013). The restricted CO_2 diffusion from the ambient air
379 to chloroplast is the main reason for a decreased A under water stress conditions due
380 to both the stomatal and mesophyll limitations (Olsovska et al., 2016). The
381 relationship between g_s and g_m may reflect a co-variation between A and g_m , or a
382 tendency for g_m to compensate for reductions in g_s (Buckley and Warren, 2014).

383

384 The relative contribution of V_{cmax} to A not only depends on C_a-C_c , but also on leaf
385 nutrient levels. Leaf nitrogen (N) and P were closely related to V_{cmax} . Leaf N:P ratio in
386 the same plants in a related study was 24.55 ± 7.7 (Wang et al., in review), indicating a
387 P limitation to photosynthesis (Gusewell 2004). Although there was no significant
388 relationship between l_m and leaf N:P, there was a trend of increasing l_m with
389 increasing leaf N:P.

390

391 The trade-off between CO_2 supply (g_s and g_m) and demand (carboxylation capacity of
392 Rubisco) can help maintain high photosynthetic efficiency with low CO_2 diffusion
393 conductance (Galmes et al., 2017; Saez et al., 2017). In this study, we used V_{cmax} as a
394 proxy for the carboxylation capacity of Rubisco, and the normalized V_{cmax} by A
395 ($V=V_{\text{cmax}}/A$) was significantly negatively correlated with the normalized g_s by A (G_t
396 = g_s/A) ($P < 0.001$) (Fig. 2c), indicating that the trade-off between CO_2 supply and
397 demand also existed among different species in the same ecosystems. For genus
398 *Limonium* (flowering plants) (Galmes et al., 2017), g_t was significantly positively
399 related to Rubisco carboxylase specific activity, and significantly negatively related to
400 Rubisco specificity factor to CO_2 . In case of Antarctic vascular (Saez et al., 2017) and
401 Mediterranean plants (Flexas et al., 2014), A was mainly limited by low g_m , but it
402 could be partially counterbalanced by a highly-efficient Rubisco through high

403 specificity for CO₂. This highlights the importance of the trade-off between CO₂
404 supply and demand in plant adaptation to Karst environment. However, it is still
405 unknown how leaf anatomical traits affect g_m and A , and this should be further
406 explored.

407

408 **4.3 Co-variation of g_s , g_m and V_{cmax} in regulating iWUE**

409 Compared with the global dataset under well-watered conditions (19.27-171.88 μmol
410 CO₂ mol⁻¹ H₂O) (Flexas et al., 2016), the iWUE (29.52-88.92 μmol CO₂ mol⁻¹ H₂O)
411 in this study was somewhat lower in this study. Although Karst soils cannot contain
412 enough water for plant growth, the water use strategies (high g_s/A and low V_{cmax_Ci}/A)
413 were similar to the shown for plants growing in hot and wet regions. Prentice et al.
414 (2014) studied the carbon gain and water loss of woody species in contrasting
415 climates, and found that species in hot and wet regions tend to loss more water in
416 order to fix more carbon (high g_s/A , low V_{cmax_Ci}/A), and vice versa. These results
417 indicates that plants tend to loss more water in order to fix more carbon. However, the
418 variability of iWUE in this study was larger than in the Karst tropical primary forest
419 (Fu et al., 2012; Chen et al., 2015). The average iWUE of 12 vines and 13 trees in the
420 Karst tropical primary forest was 41.23 ± 13.21 μmol CO₂ mol⁻¹ H₂O (Chen et al.,
421 2015), while that of 6 evergreen and 6 deciduous trees was 66.7 ± 4.9 and 49.7 ± 2.0
422 μmol CO₂ mol⁻¹ H₂O, respectively (Fu et al., 2012)

423

424 The iWUE was regulated by the co-variation of g_s , g_m , and V_{cmax} . In theory, water loss
425 was regulated by g_s only, while A was regulated by g_s , g_m , and V_{cmax} (Fig. 3) (Lawson
426 and Blatt, 2014). However, iWUE in this study was negatively related to g_s , and
427 not related to A , g_m , or V_{cmax} (Fig. 6). The reason for these relationships maybe that A ,
428 g_m , and V_{cmax} co-varied. First, g_s was positively correlated to g_m . Second, an increase
429 in V_{cmax} would inevitably reduce C_c at a given g_s and g_m (Flexas et al., 2016). While
430 no significant relationship was found between V_{cmax} and CO₂ diffusion conductance
431 (g_s , g_m , and g_i), V was negatively correlated with G_s , G_m , and G_i .

432

433 CO₂ diffusion and Farquhar biochemical model indicated that iWUE was affected by
434 g_m/g_s and V_{cmax}/g_s (Gago et al., 2014; Flexas et al., 2016). There was a hyperbolic
435 dependency of iWUE on g_m/g_s due to the roles of g_s and g_m in C_i and C_c , and of C_c in
436 A (Flexas et al., 2016). In meta-analyses, both Gago et al. (2014) and Flexas et al.
437 (2016) found that iWUE was significantly positively related to g_m/g_s and V_{cmax}/g_s . The
438 results of this study are consistent with the meta-analyses (Fig. 7), demonstrating that
439 plant types with relatively high g_m/g_s or V_{cmax}/g_s had relatively high iWUE.

440

441 However, plants cannot simultaneously have high g_m/g_s and high V_{cmax}/g_s . Similarly to
442 the study of Gago et al. (2014), we found no relationship between g_m/g_s and V_{cmax}/g_s .
443 Gago et al. (2014) thought that the poor relationship between g_m/g_s and V_{cmax}/g_s
444 indicated that the iWUE may be improved by g_m/g_s or V_{cmax}/g_s separately; if both of
445 them were simultaneously improved, the enhanced effect on iWUE could be
446 anticipated. In addition, Flexas et al. (2016) showed in a simulation that the increase
447 in iWUE caused by overinvestment in photosynthetic capacity would progressively
448 lead to inefficiency in trade-off between carbon gain and water use, causing an
449 imbalance between CO₂ supply and demand.

450

451 Water use strategies are critical to the survival and distribution of species, especially
452 in harsh environments, e.g. in low-nutrient availability and water stress (Nie et al.,
453 2014). Species with high g_s , and low iWUE were defined to have
454 ‘profligate/opportunistic’ water use strategy, and species with low g_s and high iWUE
455 were defined to exhibit ‘conservative’ water use strategy (Moreno-Gutierrez et al.,
456 2012). Species in Karst environment tended to lose more water to gain more carbon,
457 i.e. Karst plants using ‘profligate/opportunistic’ water use strategy to adapt to the
458 harsh environment.,

459

460 **5 Conclusions**

461 Our results studied the impact factors (g_s , g_m , and V_{cmax}) on A and $iWUE$ in plants with
462 different life forms in field. The different contributions of g_s , g_m , and V_{cmax} to A
463 indicated that plants used diverse trade-off between CO_2 supply and demand to
464 maintain relatively high A . $iWUE$ was relatively low, but ranged widely, indicating
465 that plants used 'profligate/opportunistic' water use strategy to maintain the survival,
466 growth, and structure of the community. Those findings highlight the importance of
467 co-variation of g_s , g_m , and V_{cmax} for the adaptation of plants to the harsh environment.
468 However, the effects of leaf anatomical traits on g_s , g_m , and the trade-off between leaf
469 anatomical traits and V_{cmax} should be further explored.

470

471 **Acknowledgements**

472 This study was supported by the National Natural Science Foundation of China
473 [41571130043, 31470500, and 41671257].

474

475 **Author contributions**

476 JW, XFW. and XYZ planed and designed the research. JW performed experiments
477 and analyzed data. JW prepared the manuscript with contributions from all
478 co-authors.

479

480 **Competing interests.**

481 The authors declare that they have no conflict of interest.
482

483 **6 Reference**

484 Bongi, G. and Loreto, F.: Gas-exchange properties of salt-stressed olive (*Olea-Europaea*
485 L) leaves, *Plant Physiol.*, 90, 1408-1416, 1989.

486 Buckley, T.N. and Warren, C.R.: The role of mesophyll conductance in the economics
487 of nitrogen and water use in photosynthesis, *Photosynthesis Res.*, 119, 77-88,
488 2014.

489 Chang, J.J., Zhu, J.X., Xu, L., Su, H.X., Gao, Y., Cai, X.L., Peng, T., Wen, X.F.,
490 Zhang, J.J., He, N.P.: Rational land-use types in the karst regions of China:

491 Insights from soil organic matter composition and stability, *Catena*, 160, 345-353,
492 2018.

493 Cano, F.J., Lopez, R. and Warren, C.R.: Implications of the mesophyll conductance to
494 CO₂ for photosynthesis and water-use efficiency during long-term water stress
495 and recovery in two contrasting *Eucalyptus* species, *Plant Cell Environ.*, 37,
496 2470-2490, 2014.

497 Carriqui, M., Cabrera, H.M., Conesa, M.A., Coopman, R.E., Douthe, C., Gago, J.,
498 Galle, A., Galmes, J., Ribas-Carbo, M., Tomas, M. and Flexas, J.: Diffusional
499 limitations explain the lower photosynthetic capacity of ferns as compared with
500 angiosperms in a common garden study, *Plant Cell Environ.*, 38, 448-460, 2015.

501 Chen, H., Zhang, W., Wang, K. and Fu, W.: Soil moisture dynamics under different
502 land uses on karst hillslope in northwest Guangxi, China, *Environ. Earth Sci.*, 61,
503 1105-1111, 2010.

504 Chen, P. and Zhou, Y.: Soil nutrient capacity and forest tree sustainability in plateau
505 Karst region. *Earth and Environment*, 45, 32-37, 2017. (In Chinese)

506 Chen, Y.J., Cao, K.F., Schnitzer, S.A., Fan, Z.X., Zhang, J.L. and Bongers, F.:
507 Water-use advantage for lianas over trees in tropical seasonal forests, *New
508 Phytol.*, 205, 128-136, 2015.

509 Dimarco, G., Manes, F., Tricoli, D. and Vitale, E.: Fluorescence Parameters Measured
510 Concurrently with Net Photosynthesis to Investigate Chloroplastic CO₂
511 Concentration in Leaves of *Quercus ilex* L, *J. Plant Physiol.*, 136, 538-543, 1990.

512 Domingues, T.F., Meir, P., Feldpausch, T.R., Saiz, G., Veenendaal, E.M., Schrod, F.,
513 Bird, M., Djagbletey, G., Hien, F., Compaore, H., Diallo, A., Grace, J. and Lloyd,
514 J.: Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West
515 Africa woodlands, *Plant Cell Environ.*, 33, 959-980, 2010.

516 Epron, D., Godard, D., Cornic, G. and Genty, B.: Limitation of net CO₂ assimilation
517 rate by internal resistances to CO₂ transfer in the leaves of two tree species
518 (*Fagus sylvatica* L. and *Castanea sativa* Mill), *Plant Cell Environ.*, 18, 43-51,
519 1995.

520 Ethier, G.J. and Livingston, N.J.: On the need to incorporate sensitivity to CO₂

521 transfer conductance into the Farquhar-von Caemmerer-Berry leaf
522 photosynthesis model, *Plant Cell Environ.*, 27, 137-153, 2004.

523 Evans, J.R.: Nitrogen and photosynthesis in the flag leaf of Wheat (*Triticum aestivum*
524 L.), *Plant Physiol.*, 72, 297-302, 1983.

525 Evans, J.R. and Voncaemmerer, S.: Carbon dioxide diffusion inside leaves, *Plant*
526 *Physiol.*, 110, 339-346, 1996.

527 Farquhar, G.D. and Sharkey, T.D.: Stomatal conductance and photosynthesis, *Annu.*
528 *Rev. Plant Physiol. Plant Mol. Biol.*, 33, 317-345, 1982.

529 Flanagan, L.B. and Farquhar, G.D.: Variation in the carbon and oxygen isotope
530 composition of plant biomass and its relationship to water-use efficiency at the
531 leaf- and ecosystem-scales in a northern Great Plains grassland, *Plant Cell*
532 *Environ.*, 37, 425-438, 2014.

533 Flexas, J., Barbour, M.M., Brendel, O., Cabrera, H.M., Carriqui, M., Diaz-Espejo, A.,
534 Douthe, C., Dreyer, E., Ferrio, J.P., Gago, J., Galle, A., Galmes, J., Kodama, N.,
535 Medrano, H., Niinemets, U., Peguero-Pina, J.J., Pou, A., Ribas-Carbo, M.,
536 Tomas, M., Tossens, T. and Warren, C.R.: Mesophyll diffusion conductance to
537 CO₂: An unappreciated central player in photosynthesis, *Plant Sci.*, 193, 70-84,
538 2012.

539 Flexas, J., Niinemets, U., Galle, A., Barbour, M.M., Centritto, M., Diaz-Espejo, A.,
540 Douthe, C., Galmes, J., Ribas-Carbo, M., Rodriguez, P., Rossello, F.,
541 Soolanayakanahally, R., Tomas, M., Wright, I.J., Farquhar, G.D. and Medrano, H.:
542 Diffusional conductances to CO₂ as a target for increasing photosynthesis and
543 photosynthetic water-use efficiency, *Photosynthesis Res.*, 117, 45-59, 2013.

544 Flexas, J., Diaz-Espejo, A., Gago, J., Galle, A., Galmes, J., Gulias, J. and Medrano, H.:
545 Photosynthetic limitations in Mediterranean plants: A review, *Environ. Exp. Bot.*,
546 103, 12-23, 2014.

547 Flexas, J., Diaz-Espejo, A., Conesa, M.A., Coopman, R.E., Douthe, C., Gago, J.,
548 Galle, A., Galmes, J., Medrano, H., Ribas-Carbo, M., Tomas, M. and Niinemets,
549 U.: Mesophyll conductance to CO₂ and Rubisco as targets for improving intrinsic
550 water use efficiency in C-3 plants, *Plant Cell Environ.*, 39, 965-982, 2016.

551 Fu, P.-L., Jiang, Y.-J., Wang, A.-Y., Brodribb, T.J., Zhang, J.-L., Zhu, S.-D. and Cao,
552 K.-F.: Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with
553 the leaf phenology of angiosperm trees in an Asian tropical dry karst forest, *Ann.*
554 *Bot.*, 110, 189-199, 2012.

555 Gago, J., Douthe, C., Florez-Sarasa, I., Escalona, J.M., Galmes, J., Fernie, A.R.,
556 Flexas, J. and Medrano, H.: Opportunities for improving leaf water use
557 efficiency under climate change conditions, *Plant Sci.*, 226, 108-119, 2014.

558 Galmes, J., Angel Conesa, M., Manuel Ochogavia, J., Alejandro Perdomo, J., Francis,
559 D.M., Ribas-Carbo, M., Save, R., Flexas, J., Medrano, H. and Cifre, J.:
560 Physiological and morphological adaptations in relation to water use efficiency
561 in Mediterranean accessions of *Solanum lycopersicum*, *Plant Cell Environ.*, 34,
562 245-260, 2011.

563 Galmes, J., Molins, A., Flexas, J. and Conesa, M.A.: Coordination between leaf CO₂
564 diffusion and Rubisco properties allows maximizing photosynthetic efficiency in
565 *Limonium* species, *Plant Cell Environ.*, 40, 2081-2094, 2017.

566 Giuliani, R., Koteyeva, N., Voznesenskaya, E., Evans, M.A., Cousins, A.B. and
567 Edwards, G.E.: Coordination of leaf photosynthesis, transpiration, and structural
568 traits in rice and wild relatives (Genus *Oryza*), *Plant Physiol.*, 162, 1632-1651,
569 2013.

570 Grassi, G. and Magnani, F.: Stomatal, mesophyll conductance and biochemical
571 limitations to photosynthesis as affected by drought and leaf ontogeny in ash and
572 oak trees, *Plant Cell Environ.*, 28, 834-849, 2005.

573 Gusewell, S.: N : P ratios in terrestrial plants: variation and functional significance,
574 *New Phytol.*, 164, 243-266, 2004.

575 Harley, P.C., Loreto, F., Dimarco, G. and Sharkey, T.D.: Theoretical considerations
576 when estimating the mesophyll conductance to CO₂ flux by analysis of the
577 response of photosynthesis to CO₂, *Plant Physiol.*, 98, 1429-1436, 1992.

578 He, N.P., Yu, Q., Wu, L., Wang, Y.S. and Han, X.G.: Carbon and nitrogen store and
579 storage potential as affected by land-use in a *Leymus chinensis* grassland of
580 northern China. *Soil Biol. Biochem.* 40, 2952-2959, 2008.

581 Jobbagy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and
582 its relation to climate and vegetation. *Ecol. Appl.* 10, 423-436, 2000.

583 Jones, H.G.: Partitioning stomatal and non-stomatal limitations to photosynthesis,
584 *Plant Cell Environ.*, 8, 95-104, 1985.

585 Laisk, A., Eichelmann, H., Oja, V., Rasulov, B., Padu, E., Bichele, I., Pettai, H. and
586 Kull, O.: Adjustment of leaf photosynthesis to shade in a natural canopy: rate
587 parameters, *Plant Cell Environ.*, 28, 375-388, 2005.

588 Lawson, T. and Blatt, M.R.: Stomatal Size, Speed, and Responsiveness Impact on
589 Photosynthesis and Water Use Efficiency, *Plant Physiol.*, 164, 1556-1570, 2014.

590 Li, Z.P., Han, F. X., Su, Y., Zhang, T.L., Sun, B., Monts, D.L., and Plodinec, M.J.:
591 Assessment of soil organic and carbonate carbon storage in China. *Geoderma*
592 138, 119-126, 2007.

593 Liu, C.C., Liu, Y.G., Guo, K., Fan, D.Y., Yu, L.F. and Yang, R.: Exploitation of patchy
594 soil water resources by the clonal vine *Ficus tikoua* in karst habitats of
595 southwestern China, *Acta Physiol. Plant.*, 33, 93-102, 2011.

596 Long, S.P. and Bernacchi, C.J.: Gas exchange measurements, what can they tell us
597 about the underlying limitations to photosynthesis? Procedures and sources of
598 error, *J. Exp. Bot.*, 54, 2393-2401, 2003.

599 Loreto, F., Harley, P.C., Dimarco, G. and Sharkey, T.D.: Estimation of mesophyll
600 conductance to CO₂ flux by three different methods, *Plant Physiol.*, 98,
601 1437-1443, 1992.

602 Lu, X.T., Yin, J.X., Jepsen, M.R. and Tang, J.W.: Ecosystem carbon storage and
603 partitioning in a tropical seasonal forest in Southwestern China. *For. Ecol.*
604 *Manage.* 260, 1798-1803, 2010.

605 Moreno-Gutierrez, C., Dawson, T.E., Nicolas, E. and Querejeta, J.I.: Isotopes reveal
606 contrasting water use strategies among coexisting plant species in a
607 Mediterranean ecosystem, *New Phytol.*, 196, 489-496, 2012.

608 Muir, C.D., Conesa, M.A., Roldan, E.J., Molins, A. and Galmes, J.: Weak
609 coordination between leaf structure and function among closely related tomato
610 species, *New Phytol.*, 213, 1642-1653, 2017.

611 Nie, Y.P., Chen, H.S., Wang, K.L. and Ding, Y.L.: Seasonal variations in leaf $\delta^{13}\text{C}$
612 values: implications for different water-use strategies among species growing on
613 continuous dolomite outcrops in subtropical China, *Acta Physiol. Plant.*, 36,
614 2571-2579, 2014.

615 Niinemets, U., Diaz-Espejo, A., Flexas, J., Galmes, J. and Warren, C.R.: Role of
616 mesophyll diffusion conductance in constraining potential photosynthetic
617 productivity in the field, *J. Exp. Bot.*, 60, 2249-2270, 2009a.

618 Niinemets, U., Wright, I.J. and Evans, J.R.: Leaf mesophyll diffusion conductance in
619 35 Australian sclerophylls covering a broad range of foliage structural and
620 physiological variation, *J. Exp. Bot.*, 60, 2433-2449, 2009b.

621 Olsovská, K., Kovář, M., Breštic, M., Zivčák, M., Slamka, P. and Šao, H.B.:
622 Genotypically identifying Wheat mesophyll conductance regulation under
623 progressive drought stress, *Front. Plant Sci.*, DOI 10.3389/fpls.2016.01111,
624 2016.

625 Peguero-Pina, J.J., Flexas, J., Galmes, J., Niinemets, U., Sancho-Knapik, D., Barredo,
626 G., Villarroya, D. and Gil-Pelegrin, E.: Leaf anatomical properties in relation to
627 differences in mesophyll conductance to CO_2 and photosynthesis in two related
628 Mediterranean *Abies* species, *Plant Cell Environ.*, 35, 2121-2129, 2012.

629 Peguero-Pina, J.J., Siso, S., Flexas, J., Galmes, J., García-Nogales, A., Niinemets, U.,
630 Sancho-Knapik, D., Saz, M.A. and Gil-Pelegrin, E.: Cell-level anatomical
631 characteristics explain high mesophyll conductance and photosynthetic capacity
632 in sclerophyllous Mediterranean oaks, *New Phytol.*, 214, 585-596, 2017a.

633 Peguero-Pina, J.J., Siso, S., Flexas, J., Galmes, J., Niinemets, U., Sancho-Knapik, D.
634 and Gil-Pelegrin, E.: Coordinated modifications in mesophyll conductance,
635 photosynthetic potentials and leaf nitrogen contribute to explain the large
636 variation in foliage net assimilation rates across *Quercus ilex* provenances, *Tree*
637 *Physiol.*, 37, 1084-1094, 2017b.

638 Perdomo, J.A., Capo-Bauca, S., Carmo-Silva, E. and Galmes, J.: Rubisco and Rubisco
639 Activase Play an Important Role in the Biochemical Limitations of
640 photosynthesis in rice, wheat, and maize under high temperature and water

641 deficit, *Front. Plant Sci.*, DOI: 10.3389/fpls.2017.00490, 2017.

642 Pons, T.L., Flexas, J., Von Caemmerer, S., Evans, J.R., Genty, B., Ribas-Carbo, M.
643 and Brugnoli, E.: Estimating mesophyll conductance to CO₂: methodology,
644 potential errors, and recommendations, *J. Exp. Bot.*, 60, 2217-2234, 2009.

645 Prentice, I.C., Dong, N., Gleason, S.M., Maire, V. and Wright, I.J.: Balancing the
646 costs of carbon gain and water transport: testing a new theoretical framework for
647 plant functional ecology, *Ecol. Lett.*, 17, 82-91, 2014.

648 Saez, P.L., Bravo, L.A., Cavieres, L.A., Vallejos, V., Sanhueza, C., Font-Carrascosa,
649 M., Gil-Pelegin, E., Peguero-Pina, J.J. and Galmes, J.: Photosynthetic
650 limitations in two Antarctic vascular plants: importance of leaf anatomical traits
651 and Rubisco kinetic parameters, *J. Exp. Bot.*, 68, 2871-2883, 2017.

652 Sharkey, T.D., Vassey, T.L., Vanderveer, P.J. and Vierstra, R.D.: Carbon metabolism
653 enzymes and photosynthesis in transgenic tobacco (*Nicotiana tabacum* L.)
654 having excess phytochrome, *Planta*, 185, 287-296, 1991.

655 Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D. and Singsaas, E.L.: Fitting
656 photosynthetic carbon dioxide response curves for C3 leaves, *Plant Cell Environ.*,
657 30, 1035-1040, 2007.

658 Sharkey, T.D.: Mesophyll conductance: constraint on carbon acquisition by C3 plants,
659 *Plant Cell Environ.*, 35, 1881-1883, 2012.

660 Sun, Y., Gu, L.H., Dickinson, R.E., Pallardy, S.G., Baker, J., Cao, Y.H., Damatta, F.M.,
661 Dong, X.J., Ellsworth, D., Van Goethem, D., Jensen, A.M., Law, B.E., Loos, R.,
662 Martins, S.C.V., Norby, R.J., Warren, J., Weston, D. and Winter, K.:
663 Asymmetrical effects of mesophyll conductance on fundamental photosynthetic
664 parameters and their relationships estimated from leaf gas exchange
665 measurements, *Plant Cell Environ.*, 37, 978-994, 2014.

666 Sullivan, P. L., Wymore, A., McDowell, B., and co-authors: New Opportunities for
667 Critical Zone Science, Report of 2017 Arlington CZO All Hands Meeting
668 white booklet: Discuss new opportunities for CZ Science,
669 http://www.czen.org/sites/default/files/CZO_2017_White_Booklet_20171015a.pdf
670 df, 2017.

671 Terashima, I., Hanba, Y.T., Tholen, D. and Niinemets, U.: Leaf Functional Anatomy in
672 Relation to Photosynthesis, *Plant Physiol.*, 155, 108-116, 2011.

673 Tomas, M., Flexas, J., Copolovici, L., Galmes, J., Hallik, L., Medrano, H.,
674 Ribas-Carbo, M., Tosens, T., Vislap, V. and Niinemets, U.: Importance of leaf
675 anatomy in determining mesophyll diffusion conductance to CO₂ across species:
676 quantitative limitations and scaling up by models, *J. Exp. Bot.*, 64, 2269-2281,
677 2013.

678 Tosens, T., Nishida, K., Gago, J., Coopman, R.E., Cabrera, H.M., Carriqui, M.,
679 Laanisto, L., Morales, L., Nadal, M., Rojas, R., Talts, E., Tomas, M., Hanba, Y.,
680 Niinemets, U. and Flexas, J.: The photosynthetic capacity in 35 ferns and fern
681 allies: mesophyll CO₂ diffusion as a key trait, *New Phytol.*, 209, 1576-1590,
682 2016.

683 Veromann-Jurgenson, L.L., Tosens, T., Laanisto, L. and Niinemets, U.: Extremely
684 thick cell walls and low mesophyll conductance: welcome to the world of ancient
685 living!, *J. Exp. Bot.*, 68, 1639-1653, 2017.

686 Wang, J., Wen, X.F., Zhang, X.Y., Li, S.G., and Zhang, D.Y.: Magnesium enhances the
687 photosynthetic capacity of a subtropical primary forest in the Karst critical zone.
688 In review.

689 Warren, C.: Estimating the internal conductance to CO₂ movement, *Funct. Plant Biol.*,
690 33, 431-442, 2006.

691 Warren, C.R. and Adams, M.A.: Internal conductance does not scale with
692 photosynthetic capacity: implications for carbon isotope discrimination and the
693 economics of water and nitrogen use in photosynthesis, *Plant Cell Environ.*, 29,
694 192-201, 2006.

695 Wen, L., Li, D.J., Yang, L.Q., Luo, P., Chen, H., Xiao, K.C., Song, T.Q., Zhang, W.,
696 He, X.Y., Chen, H.S. and Wang, K.L.: Rapid recuperation of soil nitrogen
697 following agricultural abandonment in a karst area, southwest China,
698 *Biogeochemistry*, 129, 341-354, 2016.

699 Zeng, C., Liu, Z.H., Zhao, M. and Yang, R.: Hydrologically-driven variations in the
700 karst-related carbon sink fluxes: Insights from high-resolution monitoring of

701 three karst catchments in Southwest China, Journal of Hydrology, 533, 74-90,
702 2016.

703 Zhang, X.B., Bai, X.Y. and He, X.B.: Soil creeping in the weathering crust of
704 carbonate rocks and underground soil losses in the karst mountain areas of
705 southwest china, Carbonates and Evaporites, 26, 149-153, 2011.

706

707

708

709

710

711

712 **Figures**

713

714 Figure 1. Relationships between (a) CO_2 gradient between ambient air and intercellular air space ($C_a - C_c, \mu\text{mol mol}^{-1}$) and stomatal conductance
715 to $\text{CO}_2 (g_s, \text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1})$; (b) CO_2 gradient between intercellular air space and chloroplasts ($C_i - C_c, \mu\text{mol mol}^{-1}$) and mesophyll conductance to
716 $\text{CO}_2 (g_m, \text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1})$; (c) CO_2 concentration gradient between ambient air and chloroplasts ($C_a - C_c, \mu\text{mol mol}^{-1}$) and total conductance to
717 $\text{CO}_2 (g_t, \text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1})$; and (d) $C_a - C_c$ and the maximum carboxylase activity of Rubisco ($V_{\text{cmax}}, \mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$).

718

719

720

721 Figure 2. Relationships between (a) V and G_s ; (b) V and G_m ; and (c) V and G_t . V is the ratio of photosynthetic capacity (V_{max}) to light-saturated
722 net photosynthesis (A , $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$); G_s is the ratio of stomatal conductance to CO_2 (g_s , $\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) to A ; G_m is the ratio of mesophyll
723 conductance to CO_2 (g_m , $\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) to A ; G_t is the ratio of total conductance to CO_2 (g_t , $\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) to A .

Figure 3. Relationships between light-saturated net photosynthesis (A , $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) and (a) stomatal conductance to CO_2 (g_m , $\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$); (b) mesophyll conductance to CO_2 (g_m , $\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$); and (c) the maximum carboxylase activity of Rubisco (V_{cmax} , $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$).

729

730

731

732

733

734

735

736

737
 738 Figure 4. Relationships between (a) stomatal conductance to CO_2 (g_s , $\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) and l_s (g_s limitation on light-saturated net photosynthesis
 739 (A)); (b) mesophyll conductance to CO_2 (g_m , $\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) and l_m (g_m limitation on A); and (c) the maximum carboxylase activity of Rubisco
 740 (V_{cmax} , $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) and l_b (V_{cmax} limitation on A).
 741
 742
 743
 744

745
746 Figure 5. Limitation to light-saturated net photosynthesis (A) in six life forms by stomatal conductance to CO_2 (l_s), mesophyll conductance to
747 CO_2 (l_m), and the maximum carboxylase activity of Rubisco (l_b).
748
749
750
751
752

753
754
755 Figure 6. Relationships between the observed intrinsic water use efficiency (iWUE, $\mu\text{mol CO}_2 \text{ mol}^{-1} \text{ H}_2\text{O}$) and (a) light-saturated net
756 photosynthesis (A , $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$); (b) stomatal conductance to CO_2 (g_s , $\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$); (c) mesophyll conductance to CO_2 (g_m , mol CO_2
757 $\text{m}^{-2} \text{ s}^{-1}$) and (d) the maximum carboxylase activity of Rubisco (V_{cmax} , $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$).
758
759
760

761
762 Figure 7. The relationships of the intrinsic water use efficiency (iWUE, $\mu\text{mol CO}_2 \text{ mol}^{-1} \text{ H}_2\text{O}$) and (a) the ratio of mesophyll conductance to CO_2
763 (g_m) to (g_s) (g_m/g_s) and (b) the ratio of the maximum carboxylase activity of Rubisco (V_{cmax}) to g_s (V_{cmax}/g_s).
764
765