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Abstract:

Little attention has been given to plants’s trade-off between carbon gain and water
loss in Karst Critical Zone in southwestern China with low soil nutrient and water
availability. An advanced understanding of the impact of CO, diffusion and maximum
carboxylase activity of Rubisco (Vcemax) On the light-saturated net photosynthesis (A)
and intrinsic water use efficiency (iWUE) in Karst plants can provide insight into
physiological strategies used in adaptation to harsh environments. We selected six
plant life forms (63 species) in a subtropical Karst primary forest in southwestern
China, and measured CO; response curves, and calculated corresponding stomatal
conductance to CO, (gs), mesophyll conductance to CO; (gm), and Vemax. The results
showed that gs varied from 0.05 to 0.38 mol CO,m? s, gy, varied from 0.02 to 0.69
mol CO, m? s, and gy, was positively related to gs; foliar A was co-limited by gs, gm,
and Vcmax in trees, tree/shrubs, and shrubs with relatively high leaf mass per area
(LMA), and mainly constrained by gmin grasses, vines, and ferns with relatively low
LMA; and iWUE varied from 29.52 to 88.92 umol CO, mol™ H,0 across all species,
and was significantly correlated with gs, gm/Qs, and Vemax/0s. These results indicated
that Karst plants maintained relatively high A and low iWUE through the co-variation

of gs, Om, and Vcmax as adaptation to Karst environment.

Key words: iWUE; mesophyll conductance; stomatal conductance; Karst critical

zone; Vemax
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1 Introduction

The Karst Critical Zone (Karst CZ) in southwestern China accounts for over 12% of
the total global land area (more than 54x10* km?) (Zhang et al., 2011). Compared
with other CZs developed on other lithologies, Karst CZ was developed on limestone
bedrock, and characterized by inhomogeneous and shallow soil due to the greater
hydraulic erosion and complex underground drainage network (Nie et al., 2014; Chen
et al., 2015). In such conditions, the soil cannot retain enough nutrients and water for
plant growth even though precipitation is high (1000-2000 mm) (Liu et al., 2011; Fu
et al., 2012; Chen et al., 2015). To adapt to the harsh environment, Karst plants
develop distinct patterns of light-saturated net photosynthesis (A) and trade-off
between carbon gain and water loss to adapt to the harsh environment (Sullivan et al.,
2017). The intrinsic water use efficiency (iIWUE=A/gsw, the ratio of A to stomatal
conductance to H,O (gsw)), is an effective indicator of the trade-off between carbon
gain and water loss (Moreno-Gutierrez et al., 2012). Until now, variability in A and
iWUE has been reported only in 13 co-occurring trees and 12 vines (Chen et al.,
2015), and 12 co-occurring tree species (Fu et al., 2012) in two tropical Karst forests

in southwestern China.

Based on Fick's first law, A has been shown to be limited only by leaf stomatal
conductance to CO> (gs = gsw/1.6) and Vemax (Flexas et al., 2012; Buckley and Warren,
2014); originally, mesophyll conductance to CO; (gm) Was proposed to be infinite, i.e.
CO, concentration in chloroplast (C;) was equal to the CO, concentration in
intercellular air space (C;). Indeed, gm varies greatly among species (Warren and
Adams, 2006; Flexas et al., 2013). Recent studies have confirmed that A was
constrained jointly by gs, gm, and Vemax, and their relative contribution to A was
species-dependent and site-specific (Carriqui et al., 2015; Tosens et al., 2016; Galmes
et al, 2017; Peguero-Pina et al., 2017a; Peguero-Pina et al., 2017b;

Veromann-Jurgenson et al., 2017).
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Variation in iIWUE (=A/gsw) depends on the relative changes in A (gs, 9m, Vemax) and
Osw (Osw=1.6Qs) (Flexas et al., 2013; Gago et al., 2014). Theoretical relationships
between iWUE and gs, Om, and Vcmax have been deduced using two approaches. Based
on Fick's first law of CO, diffusion, Flexas et al. (2013) deduced that iIWUE was a
function of gn/gs and CO;, gradients (C,-C.) within leaf. On the other hand, combining
Fick's first law of CO, diffusion and Farquhar biochemical model (Farquhar and
Sharkey, 1982), Flexas et al. (2016) deduced that iWUE was a function of V¢max/Qs, C,
CO, compensation point of photosynthesis (), and the effective Michaelis—Menten
constant of Rubisco for CO, (Kn). Until now, most previous studies focused on the
role of CO; diffusion in limiting iWUE, and suggested that iWUE was negatively
related to gs, and positively related to gm/gs (Flexas et al., 2013). Gago et al. (2014)
used a meta-analysis with 239 species, and were the first to confirm that iWUE was
positively related to Vcmax/gs. Although both gm/gs and Vemax/gs Were positively
correlated with iWUE, there was only a weak correlation between gm/gs and Vemax/s,
which indicates that iWUE can be improved by increasing Vcmax Or gm (proportionally

higher than gs), not both (Gago et al., 2014).

It is noteworthy that Flexas et al. (2016) and Gago et al. (2014) found that most of the
previous work on constraints of gs, gm, and Vemax 0On A were conducted in crops or
saplings, and only a few studies were in natural ecosystems. For example, gp, was the
main factor limiting A in two Antarctic vascular grasses (Saez et al., 2017), and in 35
Australian sclerophylls (Niinemets et al., 2009b) in different habitats. The A of two
closely-related Mediterranean Abies species growing in two different habitats was
mainly constrained by gn, in one, and by gsin the other habitat (Peguero-Pina et al.,
2012). Beyond that, it still remains unknown how gs, gm, and Vcmax regulate A and

iWUE across species in natural ecosystems.

In this study, we selected 63 dominant plant species, including six life forms (29 trees,
11 trees/shrubs, 11 shrubs, 4 grasses, 5 vines, and 3 ferns), from a subtropical primary

forest in the Karst CZ of southwestern China, and measured their A and CO, response
4
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curves. The gm was calculated using the curve-fitting method (Ethier and Livingston,
2004). The obtained gy, was used to transform the A-C; into A-C. response curves, and
then to calculate the A and V¢max. Our objective was to determine and distinguish the
limitations of CO; diffusion (gs and gm) and V¢max On A and iWUE in different life

forms in this Karst primary forest.

2 Materials and Methods

2.1 Site information

This study was conducted in a subtropical primary forest (26°14'48"N, 105°45'51"E;
elevation, 1460 m), located in the Karst CZ of southwestern China. This region has a
typical subtropical monsoon climate, with a mean annual precipitation of 1255 mm,
and mean annual air temperature of 15.1<C (Zeng et al., 2016). The soils are
characterized by a high ratio of exposed rock, shallow and nonhomogeneous soil
cover, and complex underground drainage networks, e.g. grooves, channels and
depressions (Chen et al., 2010; Zhang et al., 2011; Wen et al., 2016). Soils and soil
water are easily leached into underground drainage networks. Soil texture was
silt-clay loam, and soil PH was 6.80+0.16 (Chang et al., 2018). The total nitrogen
and phosphorus content in soil was 7.304+0.66 and 1.1840.35 g Kg™, respectively,
which was similar with that of non-Karst CZs (Wang et al., in review). However, the
soil quantities (16.04~61.89 Kg m™) and nitrogen and phosphorus storage (12.04 and
1.68 t hm™?) was much lower than that of non-Karst CZs, due to the thin and
heterogeneous soil layer (He et al., 2008; Jobbagy et al., 2000; Lu et al., 2010; Li et
al., 2008). The typical vegetation type is mixed evergreen and broadleaf deciduous
primary forest, dominated by Itea yunnanensis Franch, Carpinus pubescens Burk.,

and Lithocarpus confinis Huang, etc. (Wang et al., in review).

2.2 Leaf gas-exchange measurements

In July and August 2016, 63 dominant species of six life forms (Table S1), including

29 trees, 11 trees/shrubs, 4 shrubs, 4 grasses, 5 vines, and 3 ferns, were selected for
5
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measurements of the A and CO, response curves. Details of leaf sampling and
measurements of CO; response-curves were described in Wang et al. (in review).
Briefly, a total of 189 fully sun-exposed, mature leaves were collected from adult
individuals of 63 species to measure CO, response curves following procedural
guidelines (Longand Bernacchi, 2003) using a portable photosynthesis system

(Li-6400, Li-Cor, USA).

A and the corresponding gsw (9s=gsw/1.6), C,, and C; were extracted from the CO,
response curve under saturating light (1500 pumol m™ s®) conditions, with CO,
concentration inside the cuvette set to 400 pmol mol™ (Domingues et al., 2010;
Domingues et al., 2010). V¢max Was estimated by fitting A-C. curves (Ethier and
Livingston, 2004). The obtained values of g, were used to transform the A-C; into

A-C. response curves as Cc=Ci — Algn.

The gm was calculated using a curve-fitting method (Ethier and Livingston, 2004). In
this study, calculated C. and the initial slope of A-C. curves were above zero,
indicating that g, estimated by the curve fitting method was valid (Warren and

Adams, 2006). Further details on the method to calculate g, are given in Section 4.1.

2.3 Theory of trade-off between carbon and water at leaf scale

The exchange of H,O and CO, between the leaf and the atmosphere is regulated by
stomata (Gago et al., 2014). According to Fick’s first law of diffusion, A and stomatal
conductance to CO, (gs) are related as:

A=g,(C,-C) 1)
where A is the photosynthetic rate (umol CO, m? s); C, is the ambient CO,

concentration (umol mol™); C;j is the intercellular CO, concentration (umol mol™).

Besides stomata, mesophyll is another barrier for CO, inside the leaf. A and

mesophyll conductance to CO; (gm) are related as:

6



Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-44
Manuscript under review for journal Biogeosciences
Discussion started: 20 February 2018

(© Author(s) 2018. CC BY 4.0 License.

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

A = gm(Ci_Cc) (2)
where C; is the CO; concentration at the sites of carboxylation (umol mol'l). C¢ not
only depends on CO, supply by gm, but also on CO, demand (the maximum

carboxylase activity of Rubisco, V¢max)-

(1) The relationship between iWUE and gn/0s

iWUE is a function of CO, diffusion conductances (e.g. gs and gm) and leaf CO;
concentration gradients. We can express A as the product of the total CO, diffusion
conductance (g;) from ambient air to chloroplasts, and the corresponding CO;
concentration gradients by combining Eg. (1) and (2) (Flexas et al., 2013):

A=g,[(C,-C)*+(C-C,)] 3)

where g¢= 1/(1/gs+1/gm). This equation demonstrates that CO, concentration gradients
in leaves are constrained by stomatal and mesophyll resistance to CO,. Therefore,

iWUE can be expressed as:

A _1  g,./g } -
o 16 (g, g, [(GrOIHEC] @)

Eg. (4) means that iWUE is positively related to gm/gs, but not to g itself (Warren
and Adams, 2006; Flexas et al., 2013; Buckley and Warren, 2014; Cano et al., 2014).

(2) The relationship between IWUE and Vemax/9s

When Fick's first law and the Farquhar biochemical model (Farquhar and Sharkey,
1982) are combined, iIWUE is also a function of V... Based on the Farquhar
biochemical model (Farquhar and Sharkey, 1982), when A is limited by Rubisco, it

can be expressed by the following equation (Sharkey et al., 2007):
A= chax (Cc -F*) R (5)

C.HK,)
where I is the CO, compensation point of photosynthesis in the absence of
non-photorespiratory respiration in light (Rg), and Kp is the effective
Michaelis—Menten constant of Rubisco for CO,. Combining Eq. (1) and (5) (Flexas et
al., 2016), we obtain:
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Vv,

cmax — (

Vomax C.+K,)(C,-C))(A+R,)
g, (CTHA (6)

Because Ry is much smaller than A in actively photosynthesizing leaves, Vemax/gs can

be approximated as:

chax - (Cc+Km)(Ca-Ci) :(Cc+Km) A

9, €. (€T g
)
Consequently, iWUE can be expressed as:
A :ivcmax (Cc_r*)
9o 16 9. (CHK,) (8)

2.4 Quantitative analysis of limitations on A

The relative contribution of gs (Is), gm (Im) and Vemax (Ip) to A can be separated by a
quantitative limitation model introduced by Jones (Jones, 1985) and further developed
by Grassi & Magnani (2005). The sum of I, Iy, and Iy is 1. I, I, and I, can be

calculated as:

= 0,/9,+0AlOC, (12)
g,+0A/0C,
| = 9,/9,,*0AIOC, (13)
0, +0A/oC,
- 9
| =—3t 14
® g, +0A/AC, (14)

where 6A/ 0C. was calculated as the slope of A-C response curves over a C. range of
50-100 pmol mol™. I, I, and I, have no units. A is co-limited by the three factors

when 15=0.3, 1,=0.3 and 1,=0.4 (Galmes, J. et al., 2017).

2.5 Statistical analysis

The correlation analysis was performed using the least square method, and all of the

data were loge-transformed. The probability of significance was defined at p< 0.05.

8
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3 Results

3.1 Interrelation among gs, gm, Ot, aNd Vemax

CO, concentration gradients in leaf were controlled by CO, diffusion conductance
and Vemax. Fig. 1 shows the relationship between CO, gradients (C,-C;, Ci-C. and
Ca-Cy) in leaf and the corresponding CO; diffusion conductance (gs, gm and gy (Fig.
la-c), and between C,-C. and V¢max (Fig. 1d). CO, concentration gradients (C,-C;,
Ci-C. and C,-C;) were significantly negatively associated with the corresponding CO;
diffusion conductance (gs, gm and g;) (P<0.001). Vcmax Was positively associated with

Ca-Ce (P<0.001).

The gs, gm, and g: were significantly positively related to each other (P<0.001) (Fig.
S1). The contribution of gn, to leaf CO, gradient was similar to that of gs (Fig. S3).
The contribution of gs (57.51-155.13 pmol mol™) to C,-Ce (98.50-282.94 umol mol™)
varied from 28% to 86%, and the contribution of gm (18.15-179.36 pmol mol™) to
C.-C. varied from 14% to 72%. But the variation range of g (0.02 —0.69 mol CO, m™
s™1) was 4.5 times that of g, (0.05-0.38 mol CO, m™ s™).

No relationship was found between the CO, diffusion conductance (gs, gm, and g;) and
Vemax (Fig. S2). However, after normalization of gs, gm, t, and Vemax for A_(normalized
parameters are hereafter called Gs=gs/A, Gm=gm/A, Gi=g/A, and V=V¢ma/A), V was
significantly positively correlated with G, and G; (P<0.001) (Fig. 2b and c), and was
slightly positively correlated with Gs (P<0.05) (Fig. 2a), which represented the
trade-off between CO, supply and demand.

3.2 Contribution of gs, gm and Vgmax to A

The variation in A was attributed to variation in both of gs, gm, g, and Vemax. A was

positively correlated with gs (Fig. 3a), gm (Fig. 3b), and Vmax (Fig. 3c). We used the

9
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quantitative limitation model (Egs. (13), (14) and (15)) to separate contributions by g
(Is), gm (Im), and Vemax (Ip) to limiting A. The I, I, and I, were negatively associated
with, respectively, gs, Om, and Vemax (Fig. 4). The contributions by gs, Om, and Vemax to
limiting A were different for each species (Fig. S3). Is varied from 0.17 to 0.45
(2.6-fold), I varied from 0.05 to 0.55 (10.5-fold), and I, varied from 0.11 to 0.68
(6.2-fold) across species. Overall, g, contribution to limiting A was the largest

(1,=0.3840.12), followed by V¢max (1,0=0.3440.11), and gs (1s=0.2840.07).

To further understand how A was limited by gs, gm, and Vcmax, We grouped the 63
species into 6 life forms: tree, tree/shrub, shrub, grass, vine, and fern. The averaged
leaf mass per area (LMA) of the 6 life forms above were as follows: 69.41429.31,
93.944-27.89, 72.35+£42.37, 47.081+16.39, 40.86£13.22 and 44.21£12.35 g m.
The results showed that tree, tree/shrub, and shrub with relatively high LMA were
co-limited by gs, gm, and Vcmax, While g, was the main constrain factor for the other
three life forms with relatively low LMA (Fig. 5). The Is showed a decreasing trend
from tree to fern. The largest average value of I was observed for tree and tree/shrub,
followed by shrub, grass, and vine and fern. The I, first declined, and then increased.
Grass had the largest averaged value of In. In contrast, Iy first increased and then

decreased. Grass had the smallest averaged value of I,.

|
3.3 Effect of g, gm and V¢max 0N iIWUE
The iWUE varied from 29.52 to 88.92 umol CO, mol™ H,O. In theory, iWUE is
regulated by gs (gsw=1.69s), gm, and Vcmax. HOwever, a simple correlation analysis
showed that iWUE was negatively related to gs (Fig. 6b), and not related to A (Fig.
6a), gm (Fig. 6¢), and V¢max (Fig. 6d).
|
A correlation analysis was used to test how gm/gs and Vemax/gs affected iWUE. The
results showed that iIWUE was positively correlated with gm/gs (Fig. 7a) and Vemax/0s

(Fig. 7b). However, there was no significant relationship between gm/gs and Vemax/gs.

10
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The iIWUE was regulated by co-variation between gs, gm and Vemax.

4 Discussion

4.1 The role of g, in CO, diffusion and V¢max

Three methods are most commonly used for gp, estimation. Those methods have been
reviewed by Warren (2006) and Pons et al. (2009). Briefly, gn can be calculated by
the stable isotope method (Evans, 1983; Sharkey et al., 1991; Loreto et al., 1992), J
method (Bongi and Loreto, 1989; Dimarco et al., 1990; Harley et al., 1992; Epron et
al., 1995; Laisk et al., 2005), and ‘curve-fitting” method (Ethier and Livingston, 2004;
Sharkey et al., 2007). All of these methods are based on gas exchange measurements
(Pons et al., 2009), and some common assumptions (Warren, 2006). Thus, the

accuracy of each method is largely unknown (Warren, 2006).

The gm was estimated by the ‘curve-fitting” method in this study. Although the
‘curve-fitting” method is less precise than the stable isotope method, the
‘curve-fitting” method is much more readily available and has been used for several
decades (Warren, 2006; Sharkey, 2012). Accurate measurements of A and C;is a
prerequisite for estimating gm using the ‘curve-fitting” method (Pons et al., 2009).
Warren (2006) pointed out that highly-accurate measurements need small leaf area
and low flow rates. We confirmed that the calculated C. and the initial slope of A-C,

curves were positive, suggesting that the measured g, was reliable (Warren, 2006).

Large variability in gn, has been shown both between and within species with different
leaf forms and habits (Gago et al., 2014; Flexas et al., 2016). Variability in gn, in this
study is similar to that in global datasets (Gago et al., 2014; Flexas et al., 2016). The
order of averaged g from different life forms was as follows: tree > tree/shrub >
grass > shrub > vine > fern. Previous studies have confirmed that the liquid phase of
mesophyll (Veromann-Jurgenson et al., 2017), cell wall thickness of mesophyll

(Terashima et al., 2011) or chloroplast (Tosens et al., 2016), and surface area of

11
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mesophyll and chloroplast exposed to intercellular space (Veromann-Jurgenson et al.,
2017) were the main limitations for gn,. The LMA varied from 22.98 g m™ to 154.61 g
m, the averaged value was 69.324+32.70 g m? (Wang et al., in review). Hence, the
wide variability of g, between different species and life forms in the same ecosystem

seems to be related to the diversity in leaf anatomical traits.

Large uncertainties can be introduced by ignoring gm. On one hand, gm, plays a similar
or somewhat lesser role than gs in CO; diffusion in leaf (Warren, 2006). In the present
study, gm Was positively related to gs (Fig. S1), variability range of g, was larger than
that of g, and the contribution of g, to C,-C. was similar to that of gs. Hence,
ignoring g, would overestimate the carbon isotope discrimination in photosynthesis
(A™C) (von-Caemmerer, 1996; Warren, 2006). Consistent with previous studies
(von-Caemmerer, 1996; Warren, 2006), there was a significantly positive relationship
between AC_gn, and AC_gs (A¥*C_gn=2.38*AC_g,-35.54, R’=0.22, P<0.001).
AC_gp, represented the carbon isotope discrimination when g, was finite, and

A™C_g; represented the carbon isotope discrimination when gy, was infinite.

On the other hand, ignoring g, would underestimate Vemax Up to 75% (Sun et al.,
2014). In this study, the relationship between Vemayx ciand Vemax_cc can be expressed as:
Vemax_ce=2.6*Vemax_ce-22.12 (R?=0.25, P<0.001). Vemax_ci represented Vemax calculated
based on the A-C; curve, and Vemax_cc represented Vemax calculated based on the A-Cc
curve. Furthermore, the leaf barrier to CO, caused by gn has not been represented in
the global carbon cycles, leading to an overestimation of CO, supply for carboxylation
and an underestimation of the response of photosynthesis to atmospheric CO, (Sun et

al., 2014).

4.2 Co-variation in gs, gm and V¢max in regulating A

The A was constrained by gs, Om, and Vemax acting together, however, variability in the
relative contribution of these three factors depended on species and habitats (Tosens

et al., 2016; Galmes et al., 2017; Peguero-Pina et al., 2017a; Veromann-Jurgenson et

12
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al., 2017). Compared with the global dataset, the A in the study site was high at a
given leaf phosphorus (P) level (Wang et al., in review). Under well-watered
conditions, A was co-limited by the three factors in angiosperm species (Galmes et al.,
2017), and mainly limited by gn, in ferns (Carriqui et al., 2015). Similarly in the
present study, A of tree, tree/shrub, and shrub was co-limited by gs, gm, and V¢max, and
A of fern was mainly limited by gn. However, A of both grass and vine was mainly
limited by gm (average 1,>0.4, with the largest value of 0.55 and 0.54 for grass and
fern, respectively). In addition, 20 of the 63 species were mainly limited by Vimax

(I,>0.4, with the largest value of 0.68).

The importance of gs and gn, in constraining A was variable, and depended on leaf and
mesophyll structural traits, i.e. LMA (Tomas et al., 2013), and thickness of leaf, cell
wall (Peguero-Pina et al., 2017b), and mesophyll itself (Giuliani et al., 2013). The
negative correlation of g, with LMA has been reported in previous studies (Niinemets
et al., 2009a; Tomas et al., 2013). The lack of correlation between g, and LMA, and a
positive relationship between gn/LMA and LMA in this study were similar to those
shown for gymnosperms (Veromann-Jurgenson et al., 2017). The reason for the
similarities may be a strong investment in supportive structures (\Veromann-Jurgenson

etal., 2017).

A of species with low LMA was co-limited by gs, gm, and Vemax, While A of species
with high LMA was mainly limited by CO, diffusion (Tomas et al., 2013). In this
study, trees, tree/shrub, and shrubs with relatively high LMA were co-limited by gs,
Om, and Vcmax, and life forms with low LMA were mainly limited by gm. Furthermore,
we found that g, was positively related to A (R*=0.54, P<0.001, Fig. 3b), however,
there was no close relationship between g, and LMA. The reason for this may be that
species with high LMA may have thin cell walls in mesophyll (Terashima et al.,
2011), and chloroplast (Tosens et al., 2016), or large surface areas of mesophyll and
chloroplast exposed to intercellular space (Veromann-Jurgenson et al., 2017);

conversely, species with low LMA may have thin cell walls in mesophyll (Terashima

13



Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-44
Manuscript under review for journal Biogeosciences
Discussion started: 20 February 2018

(© Author(s) 2018. CC BY 4.0 License.

373

374

375

376

377

378

379

380

381

382
383
384

385

386

387

388

389
390
391

392

393

394

395

396

397

398

399

400

401

402

et al., 2011), and chloroplast (Tosens et al., 2016), or small surface areas of mesophyll

and chloroplast exposed to intercellular space (Veromann-Jurgenson et al., 2017).

Furthermore, the co-variation of gs and g, can also regulate A. Both gs and gn are
important physical determinants of CO, supply from the atmosphere to the
chloroplasts (Giuliani et al., 2013). The restricted CO, diffusion from the ambient air
to chloroplast is the main reason for a decreased A under water stress conditions due
to both the stomatal and mesophyll limitations (Olsovska et al.,, 2016). The
relationship between gs and gm may reflect a co-variation between A and gn, or a

tendency for g, to compensate for reductions in gs (Buckley and Warren, 2014).

The relative contribution of V¢max to A not only depends on C,-Ce, but also on leaf
nutrient levels. Leaf nitrogen (N) and P were closely related to V¢max. Leaf N:P ratio in
the same plants in a related study was 24.5537.7 (Wang et al., in review), indicating a
P limitation to photosynthesis (Gusewell 2004). Although there was no significant
relationship between I, and leaf N:P, there was a trend of increasing I, with

increasing leaf N:P.

The trade-off between CO, supply (gs and gr) and demand (carboxylation capacity of
Rubisco) can help maintain high photosynthetic efficiency with low CO, diffusion
conductance (Galmes et al., 2017; Saez et al., 2017). In this study, we used V¢max as a
proxy for the carboxylation capacity of Rubisco, and the normalized Vimax by A
(V=Vemax/A) was significantly negatively correlated with the normalized gs by A (G;
=gs/A) (P<0.001) (Fig. 2c), indicating that the trade-off between CO, supply and
demand also existed among different species in the same ecosystems. For genus
Limonium (flowering plants) (Galmes et al., 2017), g; was significantly positively
related to Rubisco carboxylase specific activity, and significantly negatively related to
Rubisco specificity factor to CO,. In case of Antarctic vascular (Saez et al., 2017) and
Mediterranean plants (Flexas et al., 2014), A was mainly limited by low gm, but it

could be partially counterbalanced by a highly-efficient Rubisco through high
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specificity for CO,. This highlights the importance of the trade-off between CO,
supply and demand in plant adaptation to Karst environment. However, it is still
unknown how leaf anatomical traits affect g and A, and this should be further

explored.

4.3 Co-variation of gs, g and V¢ max in regulating iwUE

Compared with the global dataset under well-watered conditions (19.27-171.88 pmol
CO; mol™ H,0) (Flexas et al., 2016), the iIWUE (29.52-88.92 pmol CO, mol™ H,0)
in this study was somewhat lower in this study. Although Karst soils cannot contain
enough water for plant growth, the water use strategies (high gs/A and low Vemax_cilA)
were similar to the shown for plants growing in hot and wet regions. Prentice et al.
(2014) studied the carbon gain and water loss of woody species in contrasting
climates, and found that species in hot and wet regions tend to loss more water in
order to fix more carbon (high gJ/A, low Vemax cifA), and vice versa. These results
indicates that plants tend to loss more water in order to fix more carbon. However, the
variability of iWUE in this study was larger than in the Karst tropical primary forest
(Fu et al., 2012; Chen et al., 2015). The average iWUE of 12 vines and 13 trees in the
Karst tropical primary forest was 41.23+13.21 umol CO, mol™ H,O (Chen et al.,
2015), while that of 6 evergreen and 6 deciduous trees was 66.7 4.9 and 49.7+2.0

pmol CO, mol™ H,0, respectively (Fu et al., 2012)

The iIWUE was regulated by the co-variation of gs, gm, and V¢max. In theory, water loss
was regulated by gs only, while A was regulated by gs, gm, and Vemax (Fig. 3) (Lawson
and and Blatt, 2014). However, iWUE in this study was negatively related to gs, and
not related to A, gm, Or Vemax (Fig. 6). The reason for these relationships maybe that A,
Om, and Vemax CO-varied. First, gs was positively correlated to gn,. Second, an increase
in Vemax Would inevitably reduce C. at a given gs and gn, (Flexas et al., 2016). While
no significant relationship was found between V¢max and CO, diffusion conductance

(9s, 9m, and gy), V was negatively correlated with G, Gn, and G.
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CO, diffusion and Farquhar biochemical model indicated that iWUE was affected by
Om/gs and Vemax/gs (Gago et al., 2014; Flexas et al., 2016). There was a hyperbolic
dependency of iWUE on gn/gs due to the roles of gs and g, in C;j and Cg, and of C; in
A (Flexas et al., 2016). In meta-analyses, both Gago et al. (2014) and Flexas et al.
(2016) found that iWUE was significantly positively related to gm/gs and Vemax/s. The
results of this study are consistent with the meta-analyses (Fig. 7), demonstrating that

plant types with relatively high gm/gs or Vemax/gs had relatively high iWUE.

However, plants cannot simultaneously have high gm/gs and high Vemax/gs. Similarly to
the study of Gago et al. (2014), we found no relationship between gn/gs and Vemax/Os.
Gago et al. (2014) thought that the poor relationship between gm/gs and Vemax/Qs
indicated that the iWUE may be improved by gm/gs or Vemax/Qs separately; if both of
them were simultaneously improved, the enhanced effect on IWUE could be
anticipated. In addition, Flexas et al. (2016) showed in a simulation that the increase
in iIWUE caused by overinvestment in photosynthetic capacity would progressively
lead to inefficiency in trade-off between carbon gain and water use, causing an

imbalance between CO, supply and demand.

Water use strategies are critical to the survival and distribution of species, especially
in harsh environments, e.g. in low-nutrient availability and water stress (Nie et al.,
2014). Species with high gs, and low IWUE were defined to have
‘profligate/opportunistic’ water use strategy, and species with low gs and high iWUE
were defined to exhibit ‘conservative’ water use strategy (Moreno-Gutierrez et al.,
2012). Species in Karst environment tended to lose more water to gain more carbon,
i.e. Karst plants using ‘profligate/opportunistic’ water use strategy to adapt to the

harsh enviroment,.

5 Conclusions
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Our results studied the impact factors (gs, gm, and Vemax) on A and iWUE in plants with
different life forms in field. The different contributions of gs, gm, and Vemax t0 A
indicated that plants used diverse trade-off between CO, supply and demand to
maintain relatively high A. iWUE was relatively low, but ranged widely, indicating
that plants used ‘profligate/opportunistic’ water use strategy to maintain the survival,
growth, and structure of the community. Those findings highlight the importance of
co-variation of gs, gm, and V¢max for the adaptation of plants to the harsh environment.
However, the effects of leaf anatomical traits on gs, gm, and the trade-off between leaf

anatomical traits and V¢max should be further explored.
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